Decision tree classifiers for evidential attribute values and class labels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branching on Attribute Values in Decision Tree Generation

The problem of deciding which subset of values of a categorical-valued attribute to branch on during decision tree generation is addressed. Algorithms such as ID3 and C4 do not address the issue and simply branch on each value of the selected attribute. The GID3* algorithm is presented and evaluated. The GID3* algorithm is a generalized version of Quinlan’s ID3 and C4, and is a non-parametric v...

متن کامل

Training and Evaluating Classifiers from Evidential Data: Application to E 2 M Decision Tree Pruning

In many application data are imperfect, imprecise or more generally uncertain. Many classification methods have been presented that can handle data in some parts of the learning or the inference process, yet seldom in the whole process. Also, most of the proposed approach still evaluate their results on precisely known data. However, there are no reason to assume the existence of such data in a...

متن کامل

Learning Decision Tree Classifiers from Attribute Value Taxonomies and Partially Specified Data

We consider the problem of learning to classify partially specified instances i.e., instances that are described in terms of attribute values at different levels of precision, using user-supplied attribute value taxonomies (AVT). We formalize the problem of learning from AVT and data and present an AVT-guided decision tree learning algorithm (AVT-DTL) to learn classification rules at multiple l...

متن کامل

Instance-Based Classifiers Dealing with Ambiguous Attributes and Class Labels

Machine learning usually assumes that attribute values, as well as class labels, are either known precisely or not known at all. However, in our attempt to automate evaluation of intrusion detection systems, we have encountered ambiguous examples such that, for instance, an attribute’s value in a given example is known to be a or b but definitely not c or d. Previous research usually either ”di...

متن کامل

Attribute Selection Measure in Decision Tree Growing

  Laviniu Aurelian Badulescu   University of Craiova, Faculty of Automation, Computers and Electronics, Software Engineering Department     Abstract: One of the major tasks in Data Mining is classification. The growing of Decision Tree from data is a very efficient technique for learning classifiers. The selection of an attribute used to split the data set at each Decision Tree node is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fuzzy Sets and Systems

سال: 2019

ISSN: 0165-0114

DOI: 10.1016/j.fss.2018.11.006